納米本是一個尺度,納米科學技術是一個融科學前沿的高技術于一體的完整體系,它的基本涵義是在納米尺寸范圍內認識和改造自然,通過直接操作和安排原子、分子創(chuàng)新物質。納米科技主要包括:納米體系物理學、納米化學、納米材料學、納米生物學、納米電子學、納米加工學、納米力學七個方面。 納米材料是納米科技領域中最富活力、研究內涵十分豐富的科學分支。用納米來命名材料是20世紀80年代,納米材料是指由納米顆粒構成的固體材料,其中納米顆粒的尺寸最多不超過100納米。納米材料的制備與合成技術是當前主要的研究方向,雖然在樣品的合成上取得了一些進展,但至今仍不能制備出大量的塊狀樣品,因此研究納米材料的制備對其應用起著至關重要的作用。
物化性能納米顆粒的熔點和晶化溫度比常規(guī)粉末低得多,這是由于納米顆粒的表面能高、活性大,熔化時消耗的能量少,如一般鉛的熔點為600K,而20nm的鉛微粒熔點低于288K;納米金屬微粒在低溫下呈現(xiàn)電絕緣性;鈉米微粒具有極強的吸光性,因此各種納米微粒粉末幾乎都呈黑色;納米材料具有奇異的磁性,主要表現(xiàn)在不同粒徑的納米微粒具有不同的磁性能,當微粒的尺寸高于某一臨界尺寸時,呈現(xiàn)出高的矯頑力,而低于某一尺寸時,矯頑力很小,例如,粒徑為85nm的鎳粒,矯頑力很高,而粒徑小于15nm的鎳微粒矯頑力接近于零;納米顆粒具有大的比表面積,其表面化學活性遠大于正常粉末,因此原來化學惰性的金屬鉑制成納米微粒(鉑黑)后卻變?yōu)榛钚詷O好的催化劑。
擴散及燒結性能納米結構材料的擴散率是普通狀態(tài)下晶格擴散率的1014~1020倍,是晶界擴散率的102~104倍,因此納米結構材料可以在較低的溫度下進行有效的摻雜,可以在較低的溫度下使不混溶金屬形成新的合金相。擴散能力提高的另一個結果是可以使納米結構材料的燒結溫度大大降低,因此在較低溫度下燒結就能達到致密化的目的。 力學性能納米材料與普通材料相比,力學性能有顯著的變化,一些材料的強度和硬度成倍地提高;納米材料還表現(xiàn)出超塑性狀態(tài),即斷裂前產生很大的伸長量。